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Laboratory research on thermonuclear synthesis [I], certain astrophysical processes 
[2], and active experiments in space [3] involve the propagation in a magnetic field of 
strong shock waves, which ionize the surrounding medium. It is therefore of interest to 
study the coupling of ionizing shock waves and the magnetic field. 

The propagation of a cylindrical gas cloud and a strong cylindrical shock wave was con- 
sidered in [4, 5]. The collisionless expansion of an ionized cloud into a homogeneous plasma 
was studied in [4]. The propagation of a cylindrical shock wave was solved in [5] with the 
effects of a magnetic field and radiation taken into account. A numerical solution for the 
explosion of a spherical charge in a magnetic field was considered in [6] in the approxima- 
tion of small Reynolds numbers (and without the deformation of the initial magnetic field 
taken into account). The solutions of several problems involving explosions with the effect 
of a magnetic field taken into account were given in [7] for the case of a point explosion. 
In [8] the propagation of ionizing shock waves in a uniform magnetic field was studied in the 
approximation that all of the gas is near the surface of the front. 

In the present paper we solve the system of magnetohydrodynamical equations numerically 
and analyze the effect of a magnetic field on the propagation of cylindrical shock waves in a 
completely ionized gas and in a weakly ionized gas modeling the atmosphere of the earth. 

It was shown in [9] that the loss of energy due to ionization of the air from the ex- 
pansion of the heated plasma cloud is relatively small, and therefore the energy losses due 
to radiation and ionization of the surrounding gas are not taken into account in the treat- 
ment given here. 

We consider the gasdynamical expansion of a cylindrical plasma cloud into a rarefied 
medium. The magnetic field vector is along the axis of the cylinder. Then the problem be- 
comes one-dimensional and is specified by the system of magnetohydrodynamical equations in 
terms of the cylindrical coordinates r, ~, z 
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where O is the density, p is the pressure, w = (v, 0, 0) is the velocity, e is the internal 
energy, ~ = (0, E, 0) is the electric field, H = (0, 0, H) is the magnetic field, f = (f, 0, 
0) is the pondermotive force, j = (0~ j, 0) is the current density, c is the speed of light, 
and t is the time. 

The gas is assumed to be inviscid and non-heat-conducting. It is convenient to con- 
sider the flow of the gas governed by the system (I) through (5) in terms of Lagrangian vari- 
ables (dm = prdr): 
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I n  o r d e r  t o  c l o s e  t h e  s y s t e m  o f  e q u a t i o n s  ( 6 )  t h r o u g h  ( 1 0 )  we u s e  t h e  e q u a t i o n  o f  s t a t e  
o f  an  i d e a l  g a s  

p = p R T ,  e = p / tp (?  - -  i)1 ( 1 1 )  

and the generalized Ohm's law 

/ = aE.  ( ~ 2 )  

Here R is the universal gas constant, ~ is the adiabatic index, T is the temperature, and o 
is the conductivity. 

In view of the symmetry of the problem, we seek the solution in the region r > 0 with 
the boundary conditions r = 0, v = 0, E = 0 and at infinity with v = 0, H = H 0, p = P0, P = 
P0, where H 0 is the external magnetic field, and P0 and P0 are the initial density and pres- 
sure of the surrounding gas. 

At the initial time the plasma is inside a cylindrical surface of radius r 0 with the 
parameters Pl, Pl, TI, v, where Pl > P0 and T l > T o . The initial magnetic field in the cloud 
is H~. 

Because of excess pressure the plasma cloud begins to expand (assuming that Pl + H~/8~ > 
P0 + H~/8~) and form a shock wave, which heats the surrounding gas and also ionizes it when 
the temperature reaches a certain critical temperature T,. Because of the motion of the 
electrically conducting gas transverse to the magnetic lines of force, an inductive current 
is created which leads to a braking of the expanding cloud by the ponderomotive forces, and 
to a change in the initial magnetic field. 

We transform the MHD equations to dimensionless form. As the basic units we use r 0, 
P0, P0, R. The units of the remaining quantities can be expressed in terms of the basic units 
as follows: 

= (ypo/Po)l/2, to = ~ / ~ ,  %-- 'Po/Po,  

.T O = po/RVo, 1to = p~/~, E o = voHp/r 

= cHo/~ ,  ~ = c 2 / ( ~ ) .  

In the material below, all quantities (except for the initial basic parameters) are expressed 
in dimensionless units. 

The problem (6) through (12) was solved numerically by the finite-difference method. 
The gasdynamical part of the difference equations was constructed according to [I0] with the 
introduction of linear and quadratic viscosities. The functions r and E are defined at inte- 
gral time points and at the centers of the mass intervals; the functions p, p, T, and e at 
integral time points and "half-integer" points of the mass intervals, and v is defined at 
"half-integer"time points and "half-integers" points of the mass intervals. At each time 
step we first calculate the gasdynamical functions explicitly, then by the method of [Ii] 
we solve the implicit electromagnetic field equations and find E and H. The time step is 
chosen from the Courant condition, in which the speed of the fast-mode magnetic waves plays 
the role of the speed of sound, and the condition involving the artificial viscosity [i0]. 

The expansion of a plasma cloud into a completely ionized background medium was solved 
using this numerical method. The conductivity in this case takes the form [12] 

A i r  was  t a k e n  a s  t h e  s u r r o u n d i n g  g a s  a t  P0 = 0 " 1 8 " 1 0 - 2  dY n / c m 2 ,  P0 = 0 - 4 3 ~ 1 0 - z 2  g / c m 3 -  The  
i n i t i a l  r a d i u s  o f  t h e  c y l i n d r i c a l  p l a s m a  c l o u d  was  r 0 = 0 . 5 " 1 0 5  cm a n d  H 0 = 0 . 5 0 e .  

F i g u r e  t shows  t h e  t i m e  d e p e n d e n c e  o f  t h e  r a d i u s  o f  t h e  c l o u d  a n d  t h e  b o u n d a r y  o f  t h e  
shock wave front for Pz = 102, Pl = I, vl = 0, Hi =0. Curves i and 4 characterize the 
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position of the contact boundary and the shock wave front when the effect of the magnetic 
field is taken into account in the expansion of the plasma cloud and the propagation of the 
shock wave. Curves 2 and 3 show the gasdynamical calculations without the effect of the mag- 
netic field taken into account. As seen from Fig. i, the magnetic field slows the expansion 
of the plasma cloud, however the shock wave front propagates more rapidly. In the limiting 
case of small perturbations this corresponds to the fact that the speed of propagation of 
fast-mode MHD waves is (a~ + H2/(4~p)Z/2) i/2, where a s is the speed of sound in the gas. The 
motion of the contact boundary is slower when the magnetic field is taken into account he- 
cause of the effect of the ponderomotive forces. 

The magnetic field distributions for the times t = 0.13, 0.34, 0.80, 1.72 (curves 1 
through 4) are shown in Fig. 2 for Pz = i0~, Pz = i, v I = 0, Hz = 0. We see that the field 
is expelled from the volume occupied by the plasma. Hence because of the high conductivity 
of the plasma a condition close to the frozen condition is realized, and the peak in the den- 
sity distribution corresponds to the peak in the magnetic field distribution. 

Calculations done for zero initial magnetic field in the plasma (H I = 0) and for an ini- 
tial field H I = H 0 show that there is no significant difference in the behavior of the solu- 
tions for these cases. 

Figure 3a shows the dependence of the gasdynamical pressure p, the magnetic pressure H2/ 
8~, and the total pressure p + H2/8~ for t = 1.9 (Pl = 102). A cusp of the gasdynamical pres- 
sure on the shock-wave front is characteristic for shock-wave propagation without the effect 
of the magnetic field taken into account. From our calculations it follows that there is a 
jump in the pressure of the plasma (curve i) on the shock-wave front for the case of propaga- 
tion in a magnetic field, and the cusp corresponds only to the total pressure (curve 3). 
Curve 2 of Fig. 3 shows the magnetic pressure distribution. These gasdynamical pressure and 
magnetic pressure distributions are established in the later stages of the propagation of the 
shock wave. 

Figure 3b shows the dependence of the gas pressure p with (solid curve) and without 
(dashed curve) the inclusion of the magnetic field for t = 0.13, 0.25, 0.34 (curves 1 through 
3) with P! = 10~- It is seen that there is a difference in the qualitative behavior of the 
gas pressure when the effect of the magnetic field is taken into account. 

We also considered the expansion of a plasma cloud in the earth's atmosphere with the 
parameters P0 = 0.18"10-2 dY n/cm2, P0 = 0.43"i0-z2 g/cm3, H0 = 0.50e, and r 0 = l0 s cm. Shock 
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waves propagating with respect to the surrounding air heat and ionize the gas. The inclusion 
of the ionization leads to the necessity of taking into account the structure of the shock 
wave because the usual conservation laws do not in general give a complete set of boundary 
conditions on the shock wave of ionization. In [13] a numerical model of the flow was pre- 
sented which allows one to avoid the direct calculation of the ionization front. It is assumed 
that ionization occurs when the gas reaches a certain critical temperature T, (in the calcu- 
lations T, ~ 30 eV) and therefore the ionization front is the surface T = T,. The background 
gas has the constant conductivity oi induced by photoionization, for example. We will assume 
that behind the ionization front the gas is completely ionized and the conductivity of the 
plasma has the form ~ =~T3/2. 

Therefore the inclusion of ionization leads to the following temperature dependence of 
the conductivity: 

I~i, T<T,~ 
o = > (13) 

As before we will apply Ohm's law (12), whose applicability for the heights of 90 km and 
above considered here follows from the data of [14]. In addition, ahead of the ionizing 
shock wave front there is always a region of initial ionization, which causes a rise in the 
concentration of charged particles. Therefore the Hall parameter X = ~eTe ~ i and this means 
that the region of applicability of Ohm's law in the form (12) can be expanded to include 
heights below 90 km. The coefficients in (13) were taken to be a I = 10 -6 , 02 = 102 . 

Figure 4a, b show the temperature distributions for t = 0.08; 0.12 (curves i and 2) and 
magnetic field distributions for t = 0.04; 0.08; 0.2 (curves 1 through 3) at Pl = I0~. The 
vertical dashed lines denote the boundary of the plasma cloud; the horizontal dashed line 
correspond to T = T,. The step in the temperature distribution in front of the contact bound- 
ary appears because of the heating of the surrounding gas by the shock wave. The temperature 
behind the shock-wave front is above T, for the times considered here, and hence the shock 
wave ionizes the surrounding gas. Because of the high conductivity of the plasma the magnetic 
field behaves in the flow region in a way similar to the case of a totally ionized medium as 
considered above. However the magnetic field maxima are smaller and they fall off more rap- 
idly than in the case of a completely ionized surrounding medium. 

Figure 5 illustrates the behavior of the current density behind the shock-wave front 
(curves 1 through 3 correspond to t = 0.04; 0.05; 0.08). The positive and negative maxima 
appear because of the discontinuity in the magnetic field on the contact boundary, and the 
discontinuity on the shock-wave front. 

The calculations of the flow for Pl = 102 show that the shock wave heats the surround- 
ing gas to temperatures below T, and ionization does not occur. Because of the small con- 
ductivity of the surrounding gas (Re m = 4~o i ~ i) the induced magnetic field is negligibly 
small in comparison with H 0. But the field is expelled from the plasma cloud and here Re m 
i. Figure 6 shows the gasdynamical pressure distribution p for t = 1.6; 2.4 and H 0 = 11.7 
(curves i and 2) and for t = 2.4 and H 0 = 0 (curve 3). The interaction of the external mag- 
netic field on the contact surface with the plasma leads to a strong braking of the plasma 
(6 = 8~p/H~ ~ i) at the times considered here. The high-pressure region inside the cloud is 
maintained by the external magnetic pressure. Because of the strong braking of the cloud by 
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the magnetic field, the shock wave traveling in the surrounding gas is much weaker and has a 
front velocity smaller than in the case when there is no external magnetic field. 

Calculations for different values of the coefficients 01 and 02 in (13) show the varia- 
tion of these coefficients (O i = i0 -+, i0 -s, 02 = 104) does not lead to a significant differ- 
ence in the results. 

Hence it follows from our calculations that the magnetic field changes the qualitative 
and quantitative behavior of the physical characteristics for the propagation of shock waves 
in a completely ionized and a weakly ionized surrounding medium. There is also a slowing of 
the contact boundary during the expansion of the plasma cloud, and because of the high con- 
ductivity of the plasma (where the conditions close to the frozen condition are realized) 
the field is expelled from the cloud. There are differences in the qualitative behavior of 
the gasdynamical pressure when the magnetic field is taken into account. The behavior of the 
magnetic field and the velocity of the shock-wave front depend on the degree of ionization of 
the surrounding gas. 
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